Due to the COVID 19 epidemic, orders may be processed with a slight delay

Search

In Stock

Arduino Nano R3 with CH340 Chip (Without Soldered)

Features

  • Microcontroller ATmega328
  • Architecture AVR
  • Operating Voltage : 5 V
  • Flash Memory : 32 KB of which 2 KB used by bootloader
  • SRAM : 2 KB
  • Clock Speed : 16 MHz
  • Analog IN Pins : 8
  • EEPROM : 1 KB
  • DC Current per I/O Pins : 40 mA (I/O Pins)
  • Input Voltage : 7-12 V
  • Digital I/O Pins : 22 (6 of which are PWM)
  • PWM Output : 6
  • Power Consumption : 19 mA
  • PCB Size : 18 x 45 mm
  • Weight : 7 g

218.30

Compare
SKU:cds-a-ab-an-r3-ch340

The Arduino Nano is a compact board similar to the UNO

The Arduino Nano is a small, complete, and breadboard-friendly board based on the ATmega328P (Arduino Nano 3.x). It has more or less the same functionality of the Arduino Duemilanove, but in a different package. It lacks only a DC power jack, and works with a Mini-B USB cable instead of a standard one.

Power
The Arduino Nano can be powered via the Mini-B USB connection, 6-20V unregulated external power supply (pin 30), or 5V regulated external power supply (pin 27). The power source is automatically selected to the highest voltage source.
Memory
The ATmega328 has 32 KB, (also with 2 KB used for the bootloader. The ATmega328 has 2 KB of SRAM and 1 KB of EEPROM.

Power
The Arduino Nano can be powered via the Mini-B USB connection, 6-20V unregulated external power supply (pin 30), or 5V regulated external power supply (pin 27). The power source is automatically selected to the highest voltage source.

Memory
The ATmega328 has 32 KB, (also with 2 KB used for the bootloader. The ATmega328 has 2 KB of SRAM and 1 KB of EEPROM.

Input and Output
Each of the 14 digital pins on the Nano can be used as an input or output, using pinMode(), digitalWrite(), and digitalRead() functions. They operate at 5 volts. Each pin can provide or receive a maximum of 40 mA and has an internal pull-up resistor (disconnected by default) of 20-50 kOhms. In addition, some pins have specialized functions:
• Serial: 0 (RX) and 1 (TX). Used to receive (RX) and transmit (TX) TTL serial data. These pins are connected to the corresponding pins of the FTDI USB-to-TTL Serial chip.
• External Interrupts: 2 and 3. These pins can be configured to trigger an interrupt on a low value, a rising or falling edge, or a change in value. See the attachInterrupt() function for details.
• PWM: 3, 5, 6, 9, 10, and 11. Provide 8-bit PWM output with the analogWrite() function.
• SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK). These pins support SPI communication, which, although provided by the underlying hardware, is not currently included in the Arduino language.
• LED: 13. There is a built-in LED connected to digital pin 13. When the pin is HIGH value, the LED is on, when the pin is LOW, it’s off.
The Nano has 8 analog inputs, each of which provide 10 bits of resolution (i.e. 1024 different values). By default they measure from ground to 5 volts, though is it possible to change the upper end of their range using the analogReference() function. Analog pins 6 and 7 cannot be used as digital pins. Additionally, some pins have specialized functionality:
• I2C: A4 (SDA) and A5 (SCL). Support I2C (TWI) communication using the Wire library (documentation on the Wiring website).
There are a couple of other pins on the board:
• AREF. Reference voltage for the analog inputs. Used with analogReference().
• Reset. Bring this line LOW to reset the microcontroller. Typically used to add a reset button to shields which block the one on the board.

Communication
The Arduino Nano has a number of facilities for communicating with a computer, another Arduino, or other microcontrollers. The ATmega328 provide UART TTL (5V) serial communication, which is available on digital pins 0 (RX) and 1 (TX). An FTDI FT232RL on the board channels this serial communication over USB and the FTDI drivers (included with the Arduino software) provide a virtual com port to software on the computer. The Arduino software includes a serial monitor which allows simple textual data to be sent to and from the Arduino board. The RX and TX LEDs on the board will flash when data is being transmitted via the FTDI chip and USB connection to the computer (but not for serial communication on pins 0 and 1). A SoftwareSerial library allows for serial communication on any of the Nano’s digital pins. The ATmega328 also support I2C (TWI) and SPI communication. The Arduino software includes a Wire library to simplify use of the I2C bus. To use the SPI communication, please see ATmega328 datasheet.

Programming
The Arduino Nano can be programmed with the Arduino software (download). Select “Arduino Duemilanove or Nano w/ ATmega328” from the Tools > Board menu (according to the microcontroller on your board). The ATmega328 on the Arduino Nano comes preburned with a bootloader that allows you to upload new code to it without the use of an external hardware programmer. It communicates using the original STK500 protocol. You can also bypass the bootloader and program the microcontroller through the ICSP (In-Circuit Serial Programming) header using Arduino ISP or similar.

Automatic (Software) Reset
Rather then requiring a physical press of the reset button before an upload, the Arduino Nano is designed in a way that allows it to be reset by software running on a connected computer. One of the hardware flow control lines (DTR) of the FT232RL is connected to the reset line of the ATmega328 via a 100 nanofarad capacitor. When this line is asserted (taken low), the reset line drops long enough to reset the chip. The Arduino software uses this capability to allow you to upload code by simply pressing the upload button in the Arduino environment. This means that the bootloader can have a shorter timeout, as the lowering of DTR can be well-coordinated with the start of the upload. This setup has other implications. When the Nano is connected to either a computer running Mac OS X or Linux, it resets each time a connection is made to it from software (via USB). For the following half-second or so, the bootloader is running on the Nano. While it is programmed to ignore malformed data (i.e. anything besides an upload of new code), it will intercept the first few bytes of data sent to the board after a connection is opened. If a sketch running on the board receives one-time configuration or other data when it first starts, make sure that the software with which it communicates waits a second after opening the connection and before sending this data.

Reviews

There are no reviews yet.

Write a review

Your email address will not be published. Required fields are marked *

Bestsellers

Compare

Uno R3 CH340G ATMega328P Development Board Compatible with Arduino

258.42
(0 Reviews)
Specifications:
  1. Microcontroller ATmega328 (SMD) – Interface CH340G
  2. Operating Voltage: 5V
  3. Input Voltage (recommended): 7-12V
  4. Input Voltage (limits): 5-20V
  5. Digital I / O Pins 14 (of which 6 provide PWM output)
  6. Analog Input Pins: 6
Compare

BPiDuino UNO Board Module (To make BANANA PI compatible with Arduino UNO)

849.60
(0 Reviews)
Specifications:
  1. ATmega328 chip on the module
  2. Compatible with for Arduino Uno
  3. Switch 5V or 3.3V GPIO
  4. Compatible with Processing code
  5. Expand SPI of Banana Pi
  6. Working voltage: 3.3V-4.5V
  7. GPIO voltage: 3.3V or 5.5
  8. 8 channel 10bit high-resolution ADC
Compare

Pro Mini ATMEGA328P 5V/16M Blue - Standard Version

238.96
(0 Reviews)
Specifications:
  1. Microcontroller: ATmega328
  2. Circuit Operating Voltage: 5V
  3. Clock frequency: 16MHz.
  4. Digital I/O Pins: 14
  5. 8 analog input port: A0 ~ A7.
  6. A pair of TTL level serial port transceiver : RX / TX.
  7. 6 PWM port: D3, D5, D6, D9, D10, D11.
  8. Support serial download.
Compare

Cytron Maker UNO Microcontroller Board- Arduino UNO Compatible Module

689.12
(0 Reviews)
Specifications:
  1. SMD ATmega328P microcontroller(the same microcontroller on Arduino UNO) with Optiboot (UNO) Bootloader
  2. USB Programming facilitated by the CH340
  3. Input voltage: USB 5V, from computer, power bank or standard USB adapter
  4. Piezo buzzer that will act as simple audio output
  5. 500mA (maximum) 3.3V voltage regulator
  6. 0-5V outputs with 3.3V compatible inputs
  7. 14 Digital I/O Pins (6 PWM outputs)
  8. 6 Analog Inputs
  9. ISP 6-pin Header
Compare

UNO Based ESP8266 Nodemcu Development Board

424.80
(0 Reviews)
Specifications:
  1. Based on ESP-8266EX.
  2. Arduino compatible, using Arduino IDE to program.
  3. Support OTA wireless upload.
  4. Onboard 5V 1A Switching Power Supply (highest input voltage 24V).
  5. The direct use of Arduino IDE development, the same operation with Arduino UNO.
  6. Operating Voltage: 3.3V
  7. Digital I/O Pins: 11
  8. Analog Input Pins: 1
Compare

Due AT91SAM3X8E ARM Cortex-M3 Board, 84MHz, 512KB Board compatible with Arduino

1,574.12
(0 Reviews)
Specifications:
  1. Microcontroller: AT91SAM3X8E
  2. Operating Voltage: 3.3V
  3. Input Voltage (recommended): 7-12V
  4. Input Voltage (limits): 6-16V
  5. Digital I/O Pins: 54 (of which 12 provide PWM output)
  6. Analog Input Pins: 12
  7. Analog Outputs Pins: 2 (DAC)
  8. A 32-bit core, that allows operations on 4 bytes wide data within a single CPU clock.
  9. CPU clock at 84Mhz
  10. 96KBytes of SRAM
Compare

ESPLORA Joystick Photosensitive Sensor Board Compatible with Arduino (Supports LCD)

2,403.66
(0 Reviews)
Specifications:
  1. Microcontroller: ATmega32u4
  2. Operating Voltage: 5V
  3. Flash Memory: 32 KB of which 4 KB used by bootloader
  4. SRAM: 2.5 KB
  5. EEPROM: 1 KB
  6. Clock Speed: 16 MHz

Back to Top
Product has been added to your cart